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ABSTRACT

Threshold selection techniques have been used as a
basic tool in image segmentation, but little work has been
done on the problem of evaluating a threshold of an image.
This paper addresses the problem of threshold evaluation
and proposes two methods for measuring the "goodness" of a
thresholded image, one based on a busyness criterion and
the other based on a discrepancy or error criterion. These
evaluation techniques are applied to both synthetic and
real images and are shown to be useful in facilitating
threshold selection. 1In fact, both methods usually result
in similar or identical thresholds which yield good segmen-
tations of the images.
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CHAPTER I

INTRODUCTION

The use of thresholding as a tool in image segmenta-
tion has been extensively studied, and a variety of techni-
ques have been proposed for automatic threshold selection.
A review of these techniques 1is presented in Appendix A.

This paper addresses the problem of evaluating the
"goodness" of a threshold applied to an image and compares
two criteria for evaluating thresholds. Such threshold
evaluation criteria can be used to evaluate threshold selec-
tion techniques, by evaluating the thresholds obtained
using these techniques. Of course, a threshold evaluation
function can also be used for threshold selection, by
applying the function to a range of thresholdings of an
image and choosing the one yielding the best evaluation.

In using a threshold evaluation function for threshold
seleccion, we should ideally select the threshold corres-
ponding to the minimum cost. As we will see in later sec-
tions, minimizing an evaluation function does not always
result in reasonable thresholds. However, even in such
cases, the use of an evaluation function does provide a
method of threshold selection that makes reasonable
thresholds easier to detect.

We will examine two metnous of evaluating and select-
ing thresholds, one based on a busyness criterion and the
other based on a discrepancy or error criterion. By

applying these methods to both synthetic and real images




we will find that they usually result in similar or identi-
cal thresholds which yield good segmentations of the images.
A comparison of the computational cost of the two methods
is also given.

Throughout the paper we will, whenever possible, relate
our work on threshold evaluation and selection to image
models in order to gain a better understanding of the mean-

ing of a good image segmentation.




CHAPTEP II

THRESHOLD EVALUATION CRITERIA

To evaluate a given thresholding of an image, one can
take an approach analogous to that used Ly Martelli and
Montanari [l ] for evaluating smoothincs of images. They
defined a cost function which was a weighted combination

of the following components:

1) A discrepancy measure, based on the difference

between the original and smoothed pictures. The measure
proposed was the sum of the squared differences between
gray levels of corresponding points in the original and
smoothed picture.

2) A busyness or roughness measure based on the com-
putation of a local property on the smoothed picture.
For example, the sum of absolute values of a difference

operator such as the gradient or Laplacian could be used.

Both of these components of the goodness of a smoothed
picture are potentially relevant to thresold evaluation.
The structure of a thresholded image should not differ from
that of the original image with respect to the number,
sizes and shapes of objects. Thus it should be possible
to formulate a criterion of goodness for thresholding
analogous to the discrepancy criterion for smoothing. The
busyness criterion is certainly applicable to tests of
threshold goodness if we adopt the point of view that a

good threshold is one which minimizes the amount of noise




or roughness in the resulting image. We will now examine
the applicability of discrepancy and busyness criteria to
threshold evaluation and discuss methods of computing these
measures on a thresholded image.

We will not consider how the discrepancy and busyness
measures might be combined into a single evaluation func-
Elon. In any case, as we shall see, the two measures tend

to give the same or similar thresholds when they are used

for threshold selection.
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2.1 Discrepancy Measures

It is not obvious how the definition of the discrepancy
measured used to evaluate smoothing could be extended to
threshold evaluation. One cannot simply measure the diff-
erence between the thresholded and unthresholded images,
since the 6utput levels used for display of the thresholded
image are usually chosen arbitrarily, and this difference
is sensitive to their choice. For example, if the output
levels were fixed at 0 and 63, then for an image with gray
levels in the range 0 to 9, a threshold of 10 or greater
would always minimize discrepancy by producing a thresholded
picture consisting of all 0's. Clearly, this would not be
desirable. A careful choice of output levels is necessary
in order to use this measure to arrive at meaningful
thresholds. Since a threshold evaluation criterion based
on the output levels used for display of the thresholded
image does not correspond to any of our intuitive notions
of how to choose a good threshold, we will not pursue this
topic here. A further discussion of this type of discre-
pancy measure is contained in Appendix B.

An alternative approach to measuring the "discrepancy"

of a thresholded image is in terms of classification error [2 ].

Let us suppose that the image consists of dark (i.e., high
gray level) objects on a light background, where the dis-
tribution of gray levels in the objects is normal with mean

and standard deviation o and that the objects occupy

=1 11
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fraction ¢ of the picture points. Then the conditional
probability density of the gray levels of object points is
1 2 2
p(zjul) = — exp[-(z—ul) /2011
V2T o
il
Similarly, if the distribution of gray levels in the back-

and standard deviation o_,

ground is normal with mean “2 2

then we have

7 2 2
p\:]mz) WXSRLRRY Yo exp[-(z—uz)/zrﬁzl

V27 o 2
Thus, the picture has overall gray level probability den-

sity
Hp(zﬁ\ul) S (l—t))p(z]mz)

We can now take as a criterion of threshold goodness
the number of points misclassified by the given threshold.
Suppose that a threshold t is chosen such that all points
with gray level x > t are classified as object points.
Then the probability of misclassifying an object point as
a background point is

=
/ p(z[ml)dz

Similarly, the probability of misclassifying a background
point as an object point is

fp(zlwz)dz
4




The overall misclassification probability is then

-0

= o
P(error]t) =) fp(z|m1)dz + (1-~u)[fp(ziu:z)dz (1)
t

Minimizing (1) enables us to obtain a minimimum error
threshold for the image.

A closed form for tm' the minimum error threshold can

dP (error|t)
dz

be obtained by setting to zero and solving

for t. Using this equation requires knowing the parameters
and a priori probabilities of the object and background
distributions. These parameters can be obtained by fitting
normal curves to the gray level histogram. The algorithm
we will use to do the fitting [3 ] is iterative, with each
successive iteration approaching a better approximation
according to some likelihood function. This procedure will
converge toward a locally optimal fit but is not guaranteed
to find a global optimum. Thus, the parameters obtained
are dependent on the initial inputs for these parameters.
In addition, it may be difficult to obtain good fits since
the histogram may be badly truncated at either end of the

gray scale.
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2.2 Busyness Measures

A threshold evaluation criterion based on the amount
of busyness, noise or roughness in the thresholded image
seems to capture many of our intuitive notions of what
constitutes a good threshold. Isolated noise points both
in the object and in the background of the thresholded
image are usually undesirable, as are larger holes in
objects and clusters of noise points in the background,
since the objects and background should ideally occupy dis-
joint gray level ranges and should have simple shapes. 1In
short, we would like our thresholded images to look smooth
rather than busy. We propose to embody these notions of a
good threshold in an automatic threshold selection pro-
cedure based on a busyness measure computed on the
thresholded image.

One method of computing the amount of busyness corres-
ponding to a given thresholding of an image is based on the
gray level co-occurrence matrix [4 ]. Let M(l,O)' M(O,l)’

and M be the joint probability matrices for

1,1 (1,=1)
gray levels occurring in relative positions (1,0), (0,1),
(1,1) and (1,-1), respectively. Represent by M the

average of these four matrices, each of which is symmetric
about the main diagonal. Suppose that a given threshold t
maps all gray levels greater than t into the object and

all other levels into the background. This mapping defines

a partition of matrix M into three non-overlapping areas:

1) Matrix elements representing co-occurrences of
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gray levels in the object, i.e., those M(i,j)s
such that 1 > t and j > t (shaded area A of Fig.
1) .

2) Matrix elements representing co-occurrences of
gray levels in the background, i.e., those M(i,j)s
such that 1 = t and j = t (shaded area B of Fig.
11

3) Matrix elements representing co-occurrences of
object gray levels with background gray levels,
i.e., M(i,j)s such that i s t and j > t (shaded
area C of Fig. l)or i > t and j s t (shaded

area C').

Note that since matrix M is symmetric about the main
diagonal we can restrict our consideration to those matrix
elements M(i,j) such that i = j.

Given a threshold t of an image, the measure of busy-
ness C(t) which will be used throughout this paper is
computed by summing those entries of the co-occurrence
matrix representing the percentage of object-background
adjacencies (i.e., the entries in area C of Fig. 1). If
C(t) is relatively high for a given threshold we would ex-
pect the thresholded image to contain a large number of
noise points and/or jagged edges. Conversely, a relatively
low C(t) would indicate that the threshold chosen results
in a smooth picture. C(t) will be zero if all gray levels
are mapped into the same output level. Since this is

obviously not desirable, the minimization of C(t) must
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3.1

be done subject to constraints on the allowable range of
the threshold. These constraints will be discussed further
in Section 2.3.

An alternative measure of the amount of busyness in a
thresholded image could be computed by applying a 4 or 8
neighbor Laplacian to that image and using the average (or
sum) of the absolute Laplacian values as a busyness measure.
Note that salt and pepper noise points and jagged edges
both contribute high absolute Laplacian values. The
Laplacian-based busyness measure and the co-occurrence-
based measure C(t) are basically equivalent. This can be
shown by considering the contributions that different
neighborhood configurations of 1's and 0's (in the threshold-
ed image) make to both the Laplacian and co-occurrence matrices.
The Lavlacian value at a point in a thresholded image is
provortional to the number of neighbors which differ from that
point. For example, the value of the 4-neighbor Laplacian
at an isolated noise point is 4. Similarly, if we comput.

a co-occurrence matrix based on pairs of points which are

horizontally and vertically adjacent, this too examines the |
four neighbors of each point, and in region C, it counts f
the number of these neighbors which differ from the point

in the thresholded image. The co-occurrence matrix is

usually normalized so that the entries sum to one.

Analogously, the average rather than the sum of the

Laplacian values may be used. Thus the two methods of

measuring busyness may yield results which differ by a con-

stant factor.
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The co-occurrence-based busyness measure has been
chosen in this study for reasons of computational simpli-
city. Busyness measures for a range of thresholds of an
image can be efficiently computed from its gray level co-
occurrence matrix. The matrix can be computed in O(r)
operations where r is proportional to the picture area.

For successive thresholds, C(t), the busyness measure for
a threshold t, can be efficiently computed by updating the
previously computed busyness measure C(t-1) with the appro-

priate row and column entires as follows:

t-1 n
C(t) = C(t-1) - ) M(i,t) + ] M(t,])
i=} j=t+1

where n is the number of gray levels in the image (and the
dimension of M). The range of thresholds over which we
would compute the busyness measure could be limited to a
narrow range by examining the gray level histogram.

A potential advantage of using the Laplacian measure
is that the Laplacian values correspond to various neighbor-
hood configurations -- for example, isolated noise points,
line ends, lines, and edges, which could be lighter or
darker than their surrounds. This information could be
valuable in evaluating a given threshold of an image with
respect to various types of busyness in the thresholded
image, which cannot be distinguished by analyzing the co-
occurrence matrix. Use of more refined measures of busy-
ness, possibly based on the Laplacian, should be considered

in future studies.
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2.3 Threshold Selection Criteria

We have discussed in Sections 2.1 and 2.2 measures
for evaluating the "goodness" of a thresholded image based
on discrepancy and busyness criteria. Using either of
these approaches we would minimize the associated evalu-
ation function in order to select the best threshold. 1In
this section we will show that constraints must be imposed
on the allowable threshold range in order to guarantee
that the threshold segments the image into two regions (in
accordance with our image model) .

In Section 2.1 we defined the discrepancy measure as
the sum of the probabilities of the two types of mis-
classification errors: object point misclassifications and
background point misclassifications. We have made the
assumption that both of these types of errors are equally
costly, and that a zero cost is assigned to a correct
classification. Our decision rule is:

Decide wy 1f £{x) > L

Otherwise decide w,
where f(x) is the gray level of a point x, and t is the
threshold. To minimize the average probability of error
we would choose t so that our decision rule always chooses
the class wy whose a posteriori probability P(milx) is
maximum. This decision rule is Bayesian [5].

To find the value t which minimizes the average prob-
ability of error we can differentiate the expression for
P(error|t) which was given previously in (1):

o0

t
0 fp(zlwl)dz ¢ (1=0) fp(zlwz)dz
.

-0

I N—
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and set the result equal to zero to obtain the following

equation:

Gp(tlwl) = (1-9) p(t|w2) (2)

Since pairs of normal curves whose variances are unequal
intersect at two points, satisfying (2) does not result in
a unique choice of t. 1In general, one of the intersection
points (tl) minimizes P(error|t) and the other (t2) maxi-
mizes this probability [6]. Fig. 2 shows examples of in-
tersections of pairs of normal curves. In Fig. 2a, the
minimum error threshold tl lies between the object and back-
ground means. In Fig. 2b, both ty and t2 lie outside the
range between the means. In this latter case, if we
threshold at tl (to obtain minimum error), the thresholded
image would consist of almost all 0's. Since we have made
the assumption that our images consist of two types of re-

gions (w, and wz), any threshold resulting in a single re-

1
gion is not satisfactory.

We will therefore impose on our minimum error threshold
evaluation function the constraint that t lie between the
object and background means, i.e., we will select t such
that (a) u, = t = y; and (b) P(error|/t) is minimal. Any
threshold satisfying (a) and (b) will be referred to as a

discrepancy threshold. The restricted range for t ensures

that, if the means of the object and background distribu-

tions are equal to their medians (as is the case, e.g., for
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normal distributions), then
a) the probability of misclassifying an object point
does not exceed 6/2, where 6 1is the a priori prob-
ability of an object point, and

b) the probability of misclassifying a background

point does not exceed (1-6)/2.
Applying our constraint (a) to the example of Fig. 2b re-
sults in t being selected at Hys the object mean. This
choice results in 50% of the object points being mis-
classified. Values of t greater than My yield object mis-
classification rates greater than 50%.

In our previous discussion of busyness (Section 2.2)
we made the assumption that images contain two gray level
populations. Based on this image model we will attempt to
predict the shape of the busyness curve to determine where
busyness attains its minima so we can decide whether we
must also impose constraints on the allowable range of
the busyness threshold.

We will again consider histograms composed of two

Gaussian distributions. Depending on the degree to which

the populations overlap and on their relative weights, the
sum of two normal distributions can result in a bimodal or
unimodal histogram. We will see that in either case it is
reasonable to suppose that the busyness curve will resemble
the 1image's gray level histogram.

Consider first the case of a bimodal histogram. If
we threshold at the mode of the background distribution we

would expect busyness to attain a relative maximum. This

.
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occurs because the probability of pairs of background
points occurring on opposite sides of t is great.. ;t at the
mode which is the mean of the background population in our
image model. If we choose t at the mode, then Py s the
probability that a background gray level is less than t,
is .5, and pb(l-pb), the probability that pairs of back-
ground points are on opposite sides of t, is maximum, so
busyness should also be maximum. Analogously, at the peak
of the object distribution, busyness should also attain a
relative maximum. Similarly, in the valley on the gray level
histogram, the busyness curve should also have a valley.
This occurs for the following reason: We are assuming
that the gray levels in the valley lie on or near the
borders of objects, and that their frequency of occurrence
is low. Thus, when t is chosen in the valley, the busy-
ness measure varies in proportion to the perimeter of the
object which grows or shrinks in size depending on where
in the valley t lies. (Note that values of t chosen to
the left of the valley bottom should result in larger
objects than values of t to the right of the valley
bottom.) Few non-border points contribute to busyness
since for thresholds in the valley the object and back-
ground 1interiors are assumed to be relatively noise-free.
Hence, thresholds chosen in the valley result in much
smaller busyness values than those which cause the object
or background interior to break up (e.g., when t is chosen

at either mode).

We can also view the busyness curve as a sum of two

g rmam———
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types of busyness, contributed by the object and by the
background, respectively. The curve corresponding to busy-
ness in the object resembles the object histogram, and the
curve corresponding to busyness in the background resembles
the background histogram. So, for a bimodal histogram we
would expect a bimodal busyness curve achieving a minimum
between the peaks.

Since we know that busyness is zero for choices of t
at the extreme ends of the grayscale (resulting in one
case in all 1's, and the other in all 0's), the threshold
at the valley bottom on a bimodal busyness curve does not
correspond to an absolute minimization of the busyness
function. However, if we constrain t to lie between the
means (as we did for discrepancy), and then minimize busy-
ness, the valley bottom would be chosen as our busyness
threshold. The rationale for this constraint on t 1is
basically the same as previously discussed. We are not
willing to misclassify more than half of the object points
as background points or vice versa.

We will now discuss the choice of a busyness threshold

for a unimodal busyness curve. When the image contains a
small object on a large background (6 close to 0), and the
means of these regions are not too far apart, we may expect
situations such as shown in Fig. 3. Here the histogram
contains a peak corresponding to the background, but the
object does not produce a peak, since the rate of falloff

of the background population outweighs the rise correspond-



Fig.

3.

Histograms containing peaks and shoulders.
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ing to the object population. However, the presence of the
object will at least produce a change in the slope of the
ygram; thus, in Fig. 3, this slope flattens out (or at

least becomes less steeply negative) as the object mean is

approached. We will refer to such a slope change as a
shoulder on the histogram. The busyness curve should also
display such a shoulder, for the reason discussed pre-

viously. We will assume that the shoulder on a unimodal
histogram, and on the corresponding busyness curve, lies
to the right of the peak. The left edge of the shoulder
is a point where an abrupt change in slope occurs. Be-
ginning at this point the loss of busyness due to leaving

the pa

ickground population is influenced by the gain in

busyness due to entering the object population. A
reasonable choice for the threhsold t would thus be the
shoulder's left edge. Since the curve becomes less steep

on the shoulder the incremental decrease in busyness for
each successive threshold t to the right of the shoulder's
left edge is less than the incfemental increase in busy-
ness resulting from decreasing the threshold (i.e., moving

to the left of the shoulder). The shoulder edge, like the

valley bottom on a bimodal curve, corresponds to a change
in slope on the busyness curve. At the shoulder edge the
slope becomes less negative but does not change in sign as
it does at the valley bottom. 1In the discussions which
follow we will refer to thresholds chosen at the valley
bottom on a bimodal busyness curve or at the shoulder on

a unimodal busyness curve as busyness thresholds.




CHAPTER III

THRESHOLD EVALUATION FOR SIMPLE CLASSES OF IMAGES

To gain a better understanding of the busyness and
discrepancy criteria for threshold evaluation, we can
study busyness values for simple classes of images. Suppose
that an image consists of dark objects on a light back-
ground, with sharp edges between them. We shall investi-
gate some simple models for the populations of gray levels
in the object and in the background. This will involve
assumptions about the distributions of gray levels and of
co-occurrences of gray level pairs. Based on such models
we can predict the structure of the co-occurrence matrix
which determines the busyness measures for given thresholds.
We will also compare busyness thresholds with discrepancy

thresholds.
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3.1 Images with Uncorrelated Gray Levels

Let us make the same assumption as in Section 2.1 re-
garding the Gaussian distributions of gray levels in the
object and background, and let us further assume that the
gray levels of adjacent pixels are uncorrelated. (These
assumptions will be refined later.) We can specify the
structure of the co-occurrence matrix and the resulting
busyness measure for a given threshold t. In modeling the
co-occurrence matrix we shall treat it as an infinite
matrix with zero entries outside the finite submatrix M.

The Gaussian model for the image gray levels gives
rise to three bivariate prcbability densities in the co-
occurrence matrix. These represent the co-occurrences of
(1) object points with object points (population Al),

(2) background points with background points (population
Az), and (3) object points with background points (popula-
tion A3), or vice versa. These densities are defined by
the exponentials

py(x,y) = ——lz— exp{-[(x—ul)2 ¥ (y-ul)zl/ZOf} ;

2nol

pz(x,y) o ﬁ—li_ exp{-l(x-uz)z g (Y‘U2)2]/20§} ; and
210
2
2 2 2
p3(x,y) e S OXP{‘[(x-ul)2/2ol + (y-u,) /202]}
2n0102

respectively. The relative positions of these populations

in the co-occurrence matrix is shown in Fig. 4.




Fig.

4.

Sketch of a co-occurrence matrix for
images with uncorrelated gray levels.
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The relative weights of these three subpopulations de-
pend on the relative areas of the object, the background,
and the object-background border. For large, compact ob-
jects, the border will have much less area than the objects.
For example, if the object is an m by m solid square, the
border area is 8m (4m+4 background points that are
adjacent to object points, and 4m-4 object points adjacent
to background points); for large m, this is much less than
the object area (mz).

The busyness measure for a given threshold t is
arrived at by summing the contributions made by the three
populations to the number of object-background adjacencies.

These contributions are, respectively (see Fig. 5):

© t t £
Byft) = [ f Py (x,y)dxdy - [ fpl(x,y)dxdy

oo

g | S
+ [ [ pyxyy)dxdy - [ [ p)(x,y)dxdy

-0 w00 -0 .00

e2] s

t T
= f f pl(X,Y)dxdy + f f pl(x,y)dxdy -

-00 =00 -0 =00

o ; =
2] Py (x,y)dxdy

-0 - OO




Fig.

5.

Busyness contributions by the three bivariate
probability densities in the co-occurrence matrix.

@ indicates
a). Contributions

b) . Contributions
c). Contirbutions

contributions to

to busyness made
to busyness made
to busyness made

busyness.

by population A
by population A

by population A3.
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® t t ;
Bz(t) = ,{ IPJ(X:)’)dxdy Co I j PZ(X,Y)dXdy
£t = B -
A R P, (x,y)dxdy - [ ] py(x,y)dxdy
: t £ o | o
= [ ] pyx,ydaxay + [ [ p,(x,y)dxdy - 2 [ [ p,(x,y)dxdy
ot 2 A =
By(t) = [ ['pylx,y)dxdy - [ [ py(x,y)dxdy
t o t t
+ [ [ pytxyyddxdy - [ | pylx,y)dxdy
w0 t ) © o t
= [ [ pyx,y)dxdy + [ [ py(x,y)dxdy - 2 [ [ py(x,y)dxdy

-0 -0 -0  -00

In order to evaluate busyness thresholds for this
simple class of images, a set of synthetic images was
generated. Each of these pictures, shown in Fia. 6,
contains two normally distributed gray level populations.
The fraction of the total picture area occupied by the
object was either 50, 25 or 10 percent. For each of the
three object sizes pictures were created having object
gray level mean 30, background mean 20, and standard de-

viationsas follows:

Standard Deviation Standard Deviation
Case of Object of background
1 3 3
2 3 S
3 5 3
4 5 5

Histograms of the pictures of Fig. 6 are shown in Fig. 7.




2

a-c Gy = 3 G, = 3
d=f %, = 3 op = 5
g-i X, = 5 gy = 3
J=k L = 5 Ay, = 5

Fig. 6. Synthetic images.

For each of the above images the mean gray
level of object points is 30 and the mean of
background points 20. The standard devia-
tions of object gray levels, 0,, and of back-
ground gray levels, 0y, are listed above.

The object occupies 50% of the total picture
area for pictures a, d, g and j; 25% for
pictutres b, e, b and k; 10% for ¢, £, 1 and 1.

Fig. 7. Histograms of the pictures of Fig. 6.
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Co-occurrence matrices computed on each of the twelve
synthetic images and log-scaled for output are shown in
I'ig. 8. Note that since the correlations of pairs of gray
levels in the object and in the background populations are
zero, the component distributions that make up the co-
occurrence matrices are circularly symmetric. The popula-

tions representing the co-occurrence of object gray levels

with background gray levels are barely visible, if at all, ‘
in the matrices of Fig. 8. This is not surprising since |
the percentage of points on or adjacent to the border is a l
small fraction of the total area (4, 3, and 2% for the ‘
squares occupying 50, 25, and 10% of the picture area).
When the distributions of object and background gray levels
overlap to the extent of Fig. 8j-1, the component popula-
tions are not distinguishable in the co-occurrence matrix.
Graphs of busyness for a range of thresholds are shown
in Fig. 9 for the pictures of Fig. 6. Note that each of
these curves resembles the shape of its corresponding gray
level histogram in Fig. 7. 1In addition, the overall shape
of the husyness curve is smoother and less noisy than that
of its corresponding histogram.
The busyness curves of Fig. 9a, b, ¢, 4, g, h, i and
j are bimodal while those of Fig. 9e, f, k and:l1 are uni-
modal. For the bimodal curves busyness thresholds are
chosen at the valley bottoms. The unimodal curves of Fig.
9e and f show a slight slope change about midway between
the minimum and maximum. Busyness thresholds were chosen

at the points on the curve corresponding to the slope




Fig. 8. Co-occurrence matrices (log-scaled)
for the pictures of Fig. 6.

Fig. 9. Graphs of busyness (y-axis) vs.
threshold (x-axis) for the pic-
tures of Fig. 6.




‘hange and their positions are indicated by vertical lines

n Fig. 9. (This slope change can be detected automatically
by the method described in [7 ].) The busyness thresholds
chosen are listed in Table 1. The curves of Fig. 9k and

1 show an almost linear rate of falloff of busyness and so
the busyness thresholds were selected at the object mean.

For comparison with the busyness curves, graphs of
discrepancy are shown in Fig. 10. Discrepancy thresholds
are also listed in Table 1. Note that only for Fig. 6% is
the discrepancy threshold chosen at the object mean.

For nine out of the tweleve pictures the busyness and
discrepancy thresholds differ by only one gray level. 1In
six cases the thresholds are identical (Fig. 6a, b, c, g,
j and 1). For the pictures in which the thresholds differ
by 2, 3 or 4 (Fig. €e, k and f, respectively) the busyness
curves are unimodal. The busyness thresholds of Fig. 6e
and f were chosen at the point to the right of the peak
where the slope changes; for Fig. 6k the threshold was
chosen at the object mean. For Fig. 6¢ , the only other
picture whose busyness curve is unimodal, both the busyness
and discrepancy thresholds were chosen at the object mean.
In summary, the discrepancy and busyness thresholds differ
by at most 1 in 9 out of the 12 cases, including all the
cases where the busyness curves are bimodal.

The results of thresholding the pictures of Fig. 6 at
every threshold in the range t = 17 to t = 32 are shown in
Fig. 11. A threshold at gray level t maps all gray levels

greater than t into the object and all other levels into
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Fig. 10,

Graphs of discrepancy (y-axis) vs.

threshold (x-axis)
of Fig. 6.

for the pictures
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Fig. lla-f). Results of thresholding the pictures
of Fig. 6a-f at every threshold in
the range t = 17 to ¢t 32
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the background. From Fig. 11 we see that in most cases
the thresholds listed in Table 1 are reasonable

thresholds.
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3.2. 1Images with Correlated Gray Levels

In our model up to now we have made an unrealistic
assumption about the correlations of each of the three
populations in the co-occurrence matrix. We have assumed
that pairs of gray levels in the object (or background) are
independent, i.e., have correlation zero. This implies that
the density functions in the co-occurrence matrix represent-
ing these points are circularly symmetric.

A more realistic model would assume a non-zero
correlation between neighboring points. A correlation near
1 would tend to elongate the density function along the
diagonal, while a negative correlation would elongate the
density along a line perpendicular to the diagonal. In real
images the correlations of points in the object and back-
ground populations should be positive, since adjacent points
which are not near the border would tend to have the same
or similar gray levels. The equations for the bivariate
density functions assuming correlated data are

1 =

1 '
Ps (X5 i X5) = exp[-5(X-M) L (X-M) ]
e e, (2“H211172 2 I

2 I
e 32
2 2
i vas

%00

where Ll

I
O ON
N

X = (xl,xz);

=
I

2 ;
and \,, 05, are the mean and variance of gray levels
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. : 2 : r
in the object, and Oyo 18 the covariance of

adjacent gray levels in the object.

e 1 v -1
P,(¥Y,,¥Y,) st @D [ (X -M) L, (X-M) ]
2 ¥ ¥ g (2")l22|l/2 2
o2 52 - 52
I v l"ll g ARy I: b bb] ;
o 2 2 € 2 2 i
@y 933d el . Ok
X = (Ylly2)7

and My oi are the mean and variance of gray levels

2
bb

of adjacent gray levels in the background.

in the background, and o is the covariance

1 1 ' -1
P, (x,y) ——— exp[-5(X-M) I (X-M) ]
3 (2n)|z3|1/2 2 3
2 2 2 2
[011 012] ["o oob]
where L, = 2 2 = 2 2
A 921 922 %% ‘b
X = (%, 9V
M= (i)
and ogb, oé) are the covariances of object gray levels

with background gray levels and vice versa.
Another assumption we have made which does not corres-
pond to what occurs in real images is that the edges between
objects and background are sharp. This assumption does not

apply to most classes of real pictures since the edges are

blurred.
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We will study a simple class of blurred synthetic
images created by unweighted averaging of the synthetic
images of Section 3.1 over square neighborhoods. Although
a linear blurring process does not exactly model blurring
in real images, it does provide a reasonable first approxi-
mation to many real blurring processes. These 1images have
nonzero correlations between adjacent gray levels in the
object (or in the background), and also have blurred edges.

Three sizes of blurring neighborhoods were applied to
the pictures of Fig. 6: 2x2, 4x4, and 8x8 (see Figs. 12, 13
and 14, respectively). Histograms of these pictures are
shown in Figs. 15, 16, and 17. As can be seen from the
histograms, the blurring process resulted in a sharpening
of the peaks corresponding to the object and background
(since the standard deviations of the object and background
distributions were lowered). Hence, the task of threshold
selection for these pictures is much easier than for those
of Fig. 6. Thresholds could be chosen at the valley bottoms
on the histograms of Fig. 15 and 16; for Fig. 17 the valley

is broader and relatively flat so we need a method for de-

ciding which threshold in the valley to choose. The threshold

selection schemes we have described are especially useful
when the histogram is not strongly bimodal; in these cases
conventional threshold selection techniques are not readily
applicable. However, we will examine the results of using
these threshold selection methods on the blurred images of
Fig. 12-14 in order to attempt to understand how our methods

are affected by the blurring process.




280 i

Figs. 12, 13,

B2

39

Results of averaging the pictures
of Fig. 6 over 2x2, 4x4 and 8x8
neighborhoods, respectively.




15,

Histograms of the pictures of
respectively.
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We can compute the resulting correlations of adjacent
gray levels 1n the object and in the background for each
blurred picture. The correlations of a pair of horizontally
or vertically adjacent gray levels in the objects or in the
backgrounds of the blurred pictures of Figs. 12-14 are .5,
.75, and .875, respectively, since these cray levels arise
from pairs of blurring neighborhoads that overlap by 50%, 75%,
and 85%%. The mean gray levels of points in the objects
and in the backgrounds of the blurred pictures are the same
as those for the pictures containing uncorrelated gray
levels (means 20 and 30, respectively). The standard de-
viations of the object and background distributions in the
blurred picture are given hy o/vn where n is the number of
points in the blur neighborhood and o is the standard de-
viation of gray levels before the blurring operation is
applied. Table 2 contains a list of the standard deviations
of the object and background populations of Figs. 6 and

12=L4,

Co-occurrence matrices computed on the blurred images
of Figs. 12-14 are shown in Figs. 18-20. The following
observations can be made by comparing these matrices to those
of Fig. 8, which were computed on the sharp images of Fig. 6:

(1) The population representing the co-occurrence of
object gray levels and that representing the co-occ¢urrence
of background gray levels are elongated along the main

diagonal. The degrees to which these populations are




Figure Fiqgure Object Background
_ No. _Part Standard Deviation  Standard Deviation
6 a; b, « 3.0 3.0
Q€. £ 2.0 5.
g B, 1A S0 3
1. k, 1 5.0 5.0
1 a, b, © s 1.5
a, e, £ - 2.5
G, hs 3 2.5 S
g7 L 2.5
13 a, b, ¢ s A 25
5 PR R D L 25
g, b, 3 1.25 L5
Jar K X L.25 e 2>
14 a, b, e .315 375
d, e & « 375 + 625
gy hHy i <625 e
IRl T | L6785 .625

Table 2. Standard deviations of object and
background gray level populations
for the synthetic pictures of
Pigs. 6, 12, 13, and 14.:




’——\ AN
a=C a-c ‘l
N N
a-f j d-f
N\ \
g-i (o ol &
NN\
i-1 j-1 b’
Fig. 18. Eig. 19

a-Cc
d-£ b e »
i LS | N

Figs. 18, 19, 20. Co-occurrence matrices (log-
scaled) computed on the pic-
tures of Figs. 12, 13 and 14,
respectively.
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elongated and pulled in towards the main diagonal are de-
pendent on their correlations, which vary according to the
size of the blurring neighborhood used.

(2) As the size of the blurring neighborhood in-
creases, the distribution of pairs of gray levels in the
middle range (between the object and background means)
approaches a uniform distribution. This can be seen in the
co-occurrence matrices of the images blurred over 8x8
neighborhoods. The gray level intensity (which is scaled
logarithmically according to the probabilities 1in the co-
occurrence matrix) is relatively constant on or near the
diagonal between the two dark spots, which correspead to
hills in the three-dimensional plot of the co-occurrence
matrix, and which represent adjacencies of pairs of gray

levels in the object and in the background.

From the above observations it is clear that our model for

the co-occurrence matrices of images containing objects on

a background separated by sharp edges does not apply to the
case of objects with blurry edges. In blurred images, since
the blurry edge zone separates interior object points from
interior background points, pairs of points on the blurry
edge have the same or similar gray levels and contribute to
the co-occurrence matrix along or near the main diagonal.
Since the gray levels on the edge lie between the object
mean and the background mean, the population of pairs of
points on the edge connects the populations of co-occurring
object points and co-occurring background points. Thus, it

is reasonable that a model for the co-occurrence matrix of
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a blurred image would consist of three populations, all of
which are centered on (and symmetric about) the main
diagonal.

Several possible models could be used to quantitatively
describe the co-occurrence matrix of a blurred image. We
could once again assume that both the object and background
gray level populations can be modeled by Guassian distribu-
tions. The population of edge points, however, could more
naturally be modelled by a uniform distribution. An alter-
native would be to model the edge points by another Gaussian
distribution whose mean lies between that of the object and
background and whose standard deviation is such that the
population is relatively flat and straddles the object and
background populations. Neither of these models will be
examined in detail in this paper.

Busyness measures based on co-occurrence matrices were

computed for thresholds in the range t = 17 to t = 32 for
each of the blurred images of Figs. 12-14. Busyness
thresholds are listed in Table 3. Graphs of busyness values
are shown in Figs. 21-23. On these curves, local minima are
always obtained between the means. HNote that for Figs. 13
and 14~there is a range of thresholds between the means
over which busyness changes very slowly.

The results of thresholding the pictures of Figs. 12-14
at every threshold in the range t = 17 to t = 32 are shown
in Figs. 24-26. The busyness thresholds for the pictures
blurred over 2x2 neighborhoods seem to minimize the total

amount of noise in the object and background of the resulting

| e v
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Minimum-Busyness Thresholds

Part of No Blur 2x2 Blur 4x4 Blur 8x8 Blur
__Figqg. (Fig. 6) (Fig. 12) (Fig. 13) (Fig. 14)
a 24 24 25 2
b 29 24 26 28
c 26 25 27 28
d 24 25 27 28
e 2 25 25 27
£ 25 26 27 28
g 24 23 25 27
h 26 24 25 27
i 28 24 25 28
J 24 24 25 27
k 30 25 24 2
1 30 26 235 47

Table 3. Busyness thresholds for the
pictures of Fig. 6 and the
blurred pictures of Figs. 12,
13 and 14.



Figs.

21 ;

22,

23

Fig. 23.

Graphs of busyness (y-axis)
vs. threshold (x-axis) for
the pictures of Figs. 12,
13, and 14, respectively.
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Fig. 25g-1). Results of thresholding the pictures of
Fig. 13g-1 at every threshold in the
FAfige €t = 1/ tO0 t = 3.
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Fig. 26a-f). Results of thresholding the pictures of
Fig. l4a-f at every threshold in the
range t = 17 to t = 32.




Fig.

26g-1).

Results of thresholding the pictures of
Fig. 14g-1 at every threshold in the
range t = 17 to t = 32.




thresholded image. For the higher degrees of averaging,
4x4 and 8x8, the noise in the object and background in-
teriors is nearly zero over a range of thresholds, so that
the chief contribution to busyness is made by the border.
As the threshold increases, the object shrinks, and its
border becomes smaller, resulting in a lower busyness
valu